
Global Properties Distributed Termination

Global Properties

Johannes Åman Pohjola
UNSW

Term 2 2022
1

Global Properties Distributed Termination

Where we’re at

Last lecture, we discussed classic distributed algorithms for commitment and consensus.

Today, we’ll discuss algorithms for establishing global properties about the system
state.

2

Global Properties Distributed Termination

Global Properties

We’ll look at two global properties:

1 How to tell if a distributed computation has terminated.

2 How to get a snapshot of the current state of a distributed system.

Question

For single-machine systems, these are relatively easy. Why are they hard in a
distributed setting?

3

Global Properties Distributed Termination

Global Properties

We’ll look at two global properties:

1 How to tell if a distributed computation has terminated.

2 How to get a snapshot of the current state of a distributed system.

Question

For single-machine systems, these are relatively easy. Why are they hard in a
distributed setting?

4

Global Properties Distributed Termination

Setting

NB

The algorithms we present this lecture are not presented as stand-alone processes.

Rather, they are snippets of code meant to be integrated into some underlying
computation the system is doing. For example, whenever the underlying computation
wishes to send a message, the algorithm may require some additional local
bookkeeping, and additional structure to the message.

5

Global Properties Distributed Termination

Setting

Aaron

?

Danielle

�Becky

- Evan

6

Chloe

-
�

-
�

6

?

6

?�
����
��	

�
���@

@@R@
@@I

@
@@R@
@@I

�
��	

Last week, we assumed total connectivity: every node can communicate directly with
every other node.

6

Global Properties Distributed Termination

Setting

Aaron

Danielle

Becky

Evan

Chloe

-

�

@
@I

@
@R

This week, nodes may be partially connected. Connectivity may be asymmetric.
Multi-hop communication may be required to reach certain nodes, or there may be no
path at all between two particular nodes.

7

Global Properties Distributed Termination

Distributed System with an Environment Node

node1

node3

node2

node4

�
��

�
��*

HHH
HHHj

HHH
HHHj

���
����

6

?

We’ll assume an environment node with no incoming edges. Every other node must be
reachable from it (perhaps via multiple hops).

node1 is our environment node (and none of the others even qualify).

8

Global Properties Distributed Termination

Distributed System with an Environment Node

node1

node3

node2

node4

�
��

�
��*

HHH
HHHj

HHH
HHHj

���
����

6

?

We’ll assume an environment node with no incoming edges. Every other node must be
reachable from it (perhaps via multiple hops).

node1 is our environment node (and none of the others even qualify).

9

Global Properties Distributed Termination

Distributed Termination

A distributed system has terminated when all processes at all nodes have terminated.

Problem

Design an algorithm that allows the environment node to announce termination, iff the
system has indeed terminated.

node1 is the environment node.

All nodes except node1 are inactive intially. They can be awoken by incoming
messages. Once messages arrive, nodes start their underlying computation, which may
eventually terminate.

At each node, (local) termination of the underlying computation is detectable by a
boolean function isTerminated.

10

Global Properties Distributed Termination

Distributed Termination

A distributed system has terminated when all processes at all nodes have terminated.

Problem

Design an algorithm that allows the environment node to announce termination, iff the
system has indeed terminated.

node1 is the environment node.

All nodes except node1 are inactive intially. They can be awoken by incoming
messages. Once messages arrive, nodes start their underlying computation, which may
eventually terminate.

At each node, (local) termination of the underlying computation is detectable by a
boolean function isTerminated.

11

Global Properties Distributed Termination

Back Edges

node1

node3

node2

node4

�
��

�
��*

HHHH
HHj

HHH
HHHj

���
����

6

?

���
�����

HH
H

HH
HHY

H
HH

H
HH

HY

��
��

�
��*

?

6

We assume back edges to carry special messages called signals.

12

Global Properties Distributed Termination

Back Edges

node1

node3

node2

node4

�
��

�
��*

HHHH
HHj

HHH
HHHj

���
����

6

?

���
�����

HH
H

HH
HHY

H
HH

H
HH

HY

��
��

�
��*

?

6

We assume back edges to carry special messages called signals.

13

Global Properties Distributed Termination

Dijkstra-Scholten algorithm (idea)

Use the signal channel to acknowledge receipt of every message along the other
channels, while maintaining counters for message deficits. At node i we do the
following.

Every send increments outDeficit i — receiving a signal decrements it.

Every receive along edge e increments inDeficit i [e] — sending a signal along e’s
back edge decrements inDeficit i [e].

For convenience we also maintain the
∑

e inDeficit i [e] as inDeficit i .

We start the computation by sending a message along every outgoing edge of node1.
node1 announces termination when its outDeficit returns to 0.

14

Algorithm 2.1: Dijkstra-Scholten algorithm (preliminary)
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0, integer outDeficit ← 0

send message
p1: send(message, destination, myID)
p2: increment outDeficit

receive message
p3: receive(message, source)
p4: increment inDeficit[source] and inDeficit

send signal
p5: when inDeficit > 1 or

(inDeficit = 1 and isTerminated and outDeficit = 0)
p6: E ← some edge E with inDeficit[E] 6= 0
p7: send(signal, E, myID)
p8: decrement inDeficit[E] and inDeficit

receive signal
p9: receive(signal,)
p10: decrement outDeficit

Global Properties Distributed Termination

Algorithm 2.2: Dijkstra-Scholten algorithm (env., preliminary)
integer outDeficit ← 0

computation
p1: for all outgoing edges E
p2: send(message, E, myID)
p3: increment outDeficit
p4: await outDeficit = 0
p5: announce system termination

receive signal
p6: receive(signal, source)
p7: decrement outDeficit

16

Global Properties Distributed Termination

The Preliminary DS Algorithm is Unsafe

node1

node3

node2

��
��

��*

HHH
HHHj

6

?

e2

e3

For i ∈ {2, 3} we have nodei ’s inDeficit = 2 and inDeficit[ei] = 1 so both can signal
back to node1, who is now fooled into announcing termination.

17

Global Properties Distributed Termination

The Preliminary DS Algorithm is Unsafe

node1

node3

node2

��
��

��*

HHH
HHHj

6

?

e2

e3

For i ∈ {2, 3} we have nodei ’s inDeficit = 2 and inDeficit[ei] = 1 so both can signal
back to node1, who is now fooled into announcing termination.

18

Global Properties Distributed Termination

The Preliminary DS Algorithm is Unsafe

node1

node3

node2

��
��

��*

HHH
HHHj

6

?

e2

e3

For i ∈ {2, 3} we have nodei ’s inDeficit = 2 and inDeficit[ei] = 1 so both can signal
back to node1, who is now fooled into announcing termination.

19

Global Properties Distributed Termination

Spanning Tree

The unsafe example cannot be reconstructed if the channel graph is a tree (with the
environment node as root).

node1

node3

node2

node4

��
�
��
�* HH

HHHHj

?

20

Global Properties Distributed Termination

Algorithm 2.3: Dijkstra-Scholten algorithm
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0
integer outDeficit ← 0
integer parent ← −1

send message
p1: when parent 6= −1 // Only active nodes send messages
p2: send(message, destination, myID)
p3: increment outDeficit

receive message
p4: receive(message,source)
p5: if parent = −1
p6: parent ← source
p7: increment inDeficit[source] and inDeficit

21

Global Properties Distributed Termination

Algorithm 2.3: Dijkstra-Scholten algorithm (continued)

send signal
p8: when inDeficit > 1
p9: E ← some edge E for which

(inDeficit[E] > 1) or (inDeficit[E] = 1 and E 6= parent)
p10: send(signal, E, myID)
p11: decrement inDeficit[E] and inDeficit
p12: or when inDeficit = 1 and isTerminated and outDeficit = 0
p13: send(signal, parent, myID)
p14: inDeficit[parent] ← 0
p15: inDeficit ← 0
p16: parent ← −1

receive signal
p17: receive(signal,)
p18: decrement outDeficit

22

Global Properties Distributed Termination

Partial Scenario for DS Algorithm

Action node1 node2 node3 node4

1 ⇒ 2 (-1,[],0) (-1,[0,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 4 (-1,[],1) (1,[1,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 3 (-1,[],1) (1,[1,0],1) (-1,[0,0,0],0) (2,[1],0)

2 ⇒ 4 (-1,[],1) (1,[1,0],2) (2,[0,1,0],0) (2,[1],0)

1 ⇒ 3 (-1,[],1) (1,[1,0],3) (2,[0,1,0],0) (2,[2],0)

3 ⇒ 2 (-1,[],2) (1,[1,0],3) (2,[1,1,0],0) (2,[2],0)

4 ⇒ 3 (-1,[],2) (1,[1,1],3) (2,[1,1,0],1) (2,[2],0)

(-1,[],2) (1,[1,1],3) (2,[1,1,1],1) (2,[2],1)

i ⇒ k means “nodei sends to nodek”; node state notation:
(parent,inDeficit[E],outDeficit)

23

Global Properties Distributed Termination

Data Structures After Completion of Partial Scenario

node1 (2)

node3 (1)

node2 (3)

node4 (1)

1

1

1

1

1

2

HH
HHHHj

��
�����

6
��

�
��
�*

?

HH
HHHHj

(outDeficit in parentheses, inDeficits on edges)

24

Global Properties Distributed Termination

Dijkstra-Scholten

Dijkstra-Scholten so far has two shortcomings:

Traffic overhead For huge computations, we need to send as many signals as
messages

Unbounded deficits For huge computations, deficits may grow to the point where
they no longer fit in memory.

Unbounded deficitis is mainly a theoretical problem. Deficits are only ever stored
locally, not sent, so messages are fixed size. Just use arbitrary-precision arithmetic to
represent them locally.

25

Global Properties Distributed Termination

Dijkstra-Scholten

Dijkstra-Scholten so far has two shortcomings:

Traffic overhead For huge computations, we need to send as many signals as
messages

Unbounded deficits For huge computations, deficits may grow to the point where
they no longer fit in memory.

Unbounded deficitis is mainly a theoretical problem. Deficits are only ever stored
locally, not sent, so messages are fixed size. Just use arbitrary-precision arithmetic to
represent them locally.

26

Global Properties Distributed Termination

Dijkstra-Scholten

One way to reduce traffic overhead in Dijkstra-Scholten is to reduce the deficit as
much as possible in a signal. That is, let signals carry a number:

send(signal, E, myID, N)

Where N is the amount deficit we’re discharging. (Note the tradeoff: less message
quantity, more message complexity)

27

Global Properties Distributed Termination

Credit-recovery algorithms

In a credit-recovery algorithm, the environment node initially holds 1 credit. Every
other node holds 0 credits.

The credit is a divisible token. Every active node needs to hold > 0 credit.

When you message somebody, give them some credit.

When a node terminates, it gives all credit back to the environment node.

28

Global Properties Distributed Termination

Credit-recovery algorithms

In a credit-recovery algorithm, the environment node initially holds 1 credit. Every
other node holds 0 credits.

The credit is a divisible token. Every active node needs to hold > 0 credit.

When you message somebody, give them some credit.

When a node terminates, it gives all credit back to the environment node.

29

Global Properties Distributed Termination

Credit-recovery algorithms

In a credit-recovery algorithm, the environment node initially holds 1 credit. Every
other node holds 0 credits.

The credit is a divisible token. Every active node needs to hold > 0 credit.

When you message somebody, give them some credit.

When a node terminates, it gives all credit back to the environment node.

30

Global Properties Distributed Termination

Credit-recovery algorithms

In a credit-recovery algorithm, the environment node initially holds 1 credit. Every
other node holds 0 credits.

The credit is a divisible token. Every active node needs to hold > 0 credit.

When you message somebody, give them some credit.

When a node terminates, it gives all credit back to the environment node.

31

Algorithm 2.4: Credit-recovery algorithm (environment node)
float weight ← 1.0

computation
p1: for all outgoing edges E
p2: weight ← weight / 2.0
p3: send(message, E, myID, weight)
p4: await weight = 1.0
p5: announce system termination

receive signal
p6: receive(signal, w)
p7: weight ← weight + w

Algorithm 2.5: Credit-recovery algorithm (non-environment node)
constant integer parent ← 0 // Environment node
boolean active ← false
float weight ← 0.0

send message
p1: if active
p2: weight ← weight / 2.0
p3: send(message, destination, myID, weight)

receive message
p4: receive(message, source, w)
p5: active ← true
p6: weight ← weight + w

send signal
p7: when terminated
p8: send(signal,parent,weight)
p9: weight ← 0.0
p10: active ← false

Global Properties Distributed Termination

Credit-recovery algorithms

Credit-recovery algorithms reduce message overhead in two ways:

1 You can discharge all your credit in a single message.

2 Credit goes straight back to the source. No need for multiple hops up the tree.

Question

What are some (potential) drawbacks of credit-recovery algorithms?

34

Global Properties Distributed Termination

Credit-recovery algorithms

Credit-recovery algorithms reduce message overhead in two ways:

1 You can discharge all your credit in a single message.

2 Credit goes straight back to the source. No need for multiple hops up the tree.

Question

What are some (potential) drawbacks of credit-recovery algorithms?

35

Global Properties Distributed Termination

Snapshots

A global snapshot is a recording of the states of all nodes and channels in the system.
This recording is (necessarily) distributed.
Node states record

values of local variables

sequences of messages sent and received

Channel states record

sequences of messages still in transit

Definition

A global snapshot is consistent iff every sent message is either in transit or received.

36

Global Properties Distributed Termination

Messages on a Channel

node1 node2-m14, m13, m12, m11, m10

37

Global Properties Distributed Termination

Sending a Marker

node1 node2-m14, m13, m12, marker, m11, m10

38

Algorithm 2.6: Chandy-Lamport algorithm for global snapshots
integer array[outgoing] lastSent ← [0, . . . , 0]
integer array[incoming] lastReceived ← [0, . . . , 0]
integer array[outgoing] stateAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtMarker ← [−1, . . . , −1]

send message
p1: send(message, destination, myID)
p2: lastSent[destination] ← message

receive message
p3: receive(message,source)
p4: lastReceived[source] ← message

where message 6= marker

NB

This algorithm assumes all channels are FIFO.

Global Properties Distributed Termination

Algorithm 2.6: Chandy-Lamport algorithm for global snapshots (continued)

receive marker
p6: receive(marker, source)
p7: messageAtMarker[source] ← lastReceived[source]
p8: if stateAtRecord = [−1,. . . ,−1] // Not yet recorded
p9: stateAtRecord ← lastSent
p10: messageAtRecord ← lastReceived
p11: for all outgoing edges E
p12: send(marker, E, myID)

record state
p13: await markers received on all incoming edges
p14: recordState

40

Global Properties Distributed Termination

The final state

When all marker messages have been received, the final state consists of the following:

stateAtRecord[E]: the last message sent on each outgoing edge E.

messageAtRecord[E]: the last message received on each incoming edge E.

The messages in transit on the edge E are:

none, if messageAtMarker[E] and messageAtRecord[E] are equal;
the messages from messageAtRecord[E]+1 to messageAtMarker[E], otherwise.

NB

Here we’ve assumed messages are numbered in the order they were sent, to simplify
the presentation. Adaptations to record message content are straightforward.

41

Global Properties Distributed Termination

The final state

When all marker messages have been received, the final state consists of the following:

stateAtRecord[E]: the last message sent on each outgoing edge E.

messageAtRecord[E]: the last message received on each incoming edge E.

The messages in transit on the edge E are:

none, if messageAtMarker[E] and messageAtRecord[E] are equal;
the messages from messageAtRecord[E]+1 to messageAtMarker[E], otherwise.

NB

Here we’ve assumed messages are numbered in the order they were sent, to simplify
the presentation. Adaptations to record message content are straightforward.

42

Global Properties Distributed Termination

The final state

When all marker messages have been received, the final state consists of the following:

stateAtRecord[E]: the last message sent on each outgoing edge E.

messageAtRecord[E]: the last message received on each incoming edge E.

The messages in transit on the edge E are:

none, if messageAtMarker[E] and messageAtRecord[E] are equal;
the messages from messageAtRecord[E]+1 to messageAtMarker[E], otherwise.

NB

Here we’ve assumed messages are numbered in the order they were sent, to simplify
the presentation. Adaptations to record message content are straightforward.

43

Global Properties Distributed Termination

The final state

When all marker messages have been received, the final state consists of the following:

stateAtRecord[E]: the last message sent on each outgoing edge E.

messageAtRecord[E]: the last message received on each incoming edge E.

The messages in transit on the edge E are:

none, if messageAtMarker[E] and messageAtRecord[E] are equal;
the messages from messageAtRecord[E]+1 to messageAtMarker[E], otherwise.

NB

Here we’ve assumed messages are numbered in the order they were sent, to simplify
the presentation. Adaptations to record message content are straightforward.

44

Global Properties Distributed Termination

Messages and Markers for a Scenario

node1 -M,3,2,1
node3

�
�
�
��

M,3,2,1

node2

@
@
@
@R

M,3,2,1

45

Global Properties Distributed Termination

Scenario for CL Algorithm (1)

Here, the three message from node1 to node2 have been received. Thre three messages
from node1 to node3, and from node2 to node3, have all been sent but not received.

Action node1 node2

ls lr st rc mk ls lr st rc mk

[3,3] [3] [3]

1M⇒2 [3,3] [3,3] [3] [3]

1M⇒3 [3,3] [3,3] [3] [3]

2⇐1M [3,3] [3,3] [3] [3]

2M⇒3 [3,3] [3,3] [3] [3] [3] [3] [3]

46

Global Properties Distributed Termination

Scenario for CL Algorithm (2)

Action node3

ls lr st rc mk

3⇐2

3⇐2 [0,1]

3⇐2 [0,2]

3⇐2M [0,3]

3⇐1 [0,3] [0,3] [0,3]

3⇐1 [1,3] [0,3] [0,3]

3⇐1 [2,3] [0,3] [0,3]

3⇐1M [3,3] [0,3] [0,3]

[3,3] [0,3] [3,3]

47

Global Properties Distributed Termination

Chandy-Lamport summary

Once consistent local snapshots are taken, they can be collected through a procedure
similar to Dijkstra-Scholten.

The snapshot may be a state that never actually occurred in the system execution.
But it’s guaranteed to be a state that could have occurred in a different interleaving.

48

Global Properties Distributed Termination

What now?

We’re on the home stretch! Next week is recap and examp prep.

In the meantime, please fill in the myExperience survey to evaluate the course. Your
feedback is tremendously helpful.

49

	Global Properties
	Distributed Termination
	Snapshots

